Excess Enthalpies of Dibromoalkane + Benzene Binary Mixtures at 298.15 K

Sofía Blanco, Manuela Artal, Javier Fernández, José Muñoz Embid, and Santos Otín*

Departamento de Química Orgánica-Química Física, Facultad de Ciencias, Universidad de Zaragoza. 50009 Zaragoza, Spain

An isobaric and quasi-isothermic calorimeter has been used to determine excess molar enthalpies, H^{E} , at 298.15 K and atmospheric pressure for seven binary mixtures containing a dibromoalkane (dibromomethane, 1,2-dibromoethane, 1,3-dibromopropane, 1,4-dibromobutane, 1,5-dibromopentane, 1,6-dibromohexane, and 1,8-dibromooctane) with benzene. H^{E} of dibromomethane + benzene is positive, decreases with the chain length of the dibromoalkane, and becomes negative for 1,4-dibromobutane and higher dibromoalkanes + benzene.

Introduction

Following our systematic study of the thermodynamic properties of binary liquid mixtures containing haloalkanes (1-6), we present here the experimental molar excess enthalpies H^{E} at 298.15 K of dibromomethane + benzene and six binary α, ω -dibromoalkane + benzene mixtures. As far as we know, the only previous measurements on these mixtures are those of Singh et al. (7) for dibromomethane + benzene, and of Neckel and Volk (8), Kalra et al. (9, 10), Pérez et al. (11), Mahl et al. (12), Birdi et al. (13), and Spah et al. (14) for dibromoethane + benzene. Our results agree satisfactorily with theirs (better than 8 J mol⁻¹ at the maximum) except with those by Pérez et al. which are higher than ours (about 40 J mol⁻¹ at the maximum at 298.15 K).

Experimental Section

All the α, ω -dibromoalkanes were the same as those used previously (6) as well as their physical properties. Dibromomethane was from Fluka AG Buchs (better than 99 mol %), and benzene was from Fluka AG Buchs (better than 99.8 mol %).

Excess molar enthalpies were determined by using an isobaric and quasi-isothermic calorimeter similar to that described in ref 15. Electrical energy was measured to better than 0.5%, and the temperature in the water bath was

Figure 1. Excess molar enthalpies H^{E} (298.15 K) of benzene + dibromomethane (O), 1,2-dibromoethane (O), 1,3-dibromopropane (=), 1,4-dibromobutane (□), 1,5-dibromopentane (\triangle), 1,6-dibromohexane (\blacklozenge), and 1,8-dibromooctane (\triangle) as a function of the mole fraction x_1 of the α, ω -dibromoalkane.

Table I. Excess Molar Enthalpies H^R at 298.15 K as a Function of the Mole Fraction x, of the Dibromoelkane

r uncer	ou or the mo	le riaci		DIDIOH	Vallaano						
x 1	$H^{\mathbf{E}}/(\mathbf{J} \ \mathbf{mol}^{-1})$	x 1	$H^{\mathbb{E}}/(J \text{ mol}^{-1})$	x 1	$H^{\mathbb{E}}/(J \text{ mol}^{-1})$						
Dibromomethane + Benzene											
0.0843	34	0.3353	114	0.5566	12 9						
0.1071	40	0.3464	116	0.6366	121						
0.1247	48	0.3791	120	0.7136	110						
0.1746	65	0.3952	122	0.8036	84						
0.9106	77	0 4972	128	0 8345	71						
0.2100	60	0.5179	120	0.0040	20						
0.2019	50	0.0172	130	0.9192	39						
	1,2	-Dibromo	ethane + Benz	ene	100						
0.0902	85	0.2730	196	0.7642	199						
0.1067	98	0.3435	225	0.8083	173						
0.1409	127	0.4494	248	0.8666	130						
0.1813	156	0.4689	253	0.9330	70						
0.2218	173	0.5742	249								
0.2457	187	0.7085									
	1.9-	Dibromo	nronane + Ben	70110							
0 1969	15	0 4000	oc propane i Den	0 7690	97						
0.1202	10	0.4500	00	0.7000	27						
0.2090	22	0.0028	38	0.8738	14						
0.2672	26	0.5890	39	0.9345	7						
0.3185	29	0.5964	37								
0.4235	35	0.6545	32								
	1,4	-Dibromo	butane + Benz	ene							
0.0335	-4	0.3870	-28	0.7831	-7						
0.0614	-7	0.4625	-31	0.8466	-2						
0 1336	-11	0.5770	-25	0.8525	2						
0.1654	-17	0.6501	-17	0.0020	5						
0.1004	-17	0.0001	-17	0.0022	2						
0.2111	-17	0.0077	-21	0.9204	4						
0.3002	-21	0.7469	-8	0.9932	1						
0.3007	22	0.7788	-9								
	1,5-	Dibromo	pentane + Ben	zene	~ ~						
0.0444	-13	0.2448	-69	0.7769	-51						
0.1074	-36	0.3062	-76	0.8389	-34						
0.1140	-38	0.3709	-82	0.8675	-31						
0.1723	-51	0.4847	-86	0.9322	-14						
0.1817	57	0.6009	-80	0.9389	-10						
0.2152	60	0.6581	67		-						
0.2199	-64	0.7142	60								
	16	Dibromo	herene + Benz	ana							
0.0602	_20	0.9554	_95	0 7990	-95						
0.0092	-20	0.0004	-00	0.7200	-00						
0.0908	-22	0.3702	-09	0.7640	-61						
0.0923	-24	0.4573	-96	0.8470	-56						
0.1235	-33	0.5928	-97	0.9047	-39						
0.1567	-47	0.6169	-9 5	0.9208	-30						
0.3021	-71	0.6311	-95	0.9313	-27						
	1,8	-Dibrom	ooctane + Benz	ene							
0.0345	-8	0.3948	-84	0.7616	68						
0.0691	-17	0.4964	-92	0.7946	-60						
0.1383	-38	0.5702	-92	0.8189	-52						
0.1510	-41	0.5983	-88	0.8208	-54						
0.1691	-42	0.6057	-88	0.8986	-28						
0.2667	-64	0.6549	_88	0.0000	-20						
0.2007		0.00-20	_70	0.8900	-20						
0.0090	- 14	U. (%) (D	-14								

0021-9568/93/1738-0587\$04.00/0

© 1993 American Chemical Society

Table II. Parameters A_i of Equation 1 for Dibromomethane and α, ω -Dibromoalkane + Benzene and Standard Deviations $\sigma(H^{\mathbf{E}})$ at 298.15 K

mixture	A_0	A_1	A_2	A_3	<i>A</i> 4	$\sigma(H^{\mathbf{E}})/$ (J mol ⁻¹)
benzene +						
dibromomethane	525	49	-85			1.6
1,2-dibromoethane	1010	110	195	-91	-115	2.3
1,3-dibromopropane	54	64	63			1.5
1.4-dibromobutane	-112	62	123			2.3
1,5-dibromopentane	-341	79	58			2.0
1,6-dibromohexane	-388	-84				2.6
1,8-dibromooctane	-370	-38	83			2.0

controlled to within 0.002 K. The estimated errors are $\delta x \leq$ 0.0002 and δT (reproducibility) = 0.01 K (16). The calorimeter was checked against hexane + cyclohexane, at 298.15 K, the agreement with the data reported (17) being better than 0.5%over the central range of concentration.

Results and Discussion

The H^E values are listed in Table I. The composition dependence of $H^{\rm E}$ was correlated by the polynomial

$$H_{\rm calc}^{\rm E}/x_1(1-x_1) = \sum A_j (2x_1 - 1)^{j-1}$$
(1)

where x_1 is the mole fraction of dibromoalkane. The A_i parameters were obtained by least-squares analysis and are collected in Table II, together with the standard deviations $\sigma(H^{\rm E})$ calculated as

$$\sigma(H^{\rm E}) = \{\sum (H^{\rm E} - H^{\rm E}_{\rm calc})^2 / (N - n)\}^{1/2}$$
(2)

where N is the total number of measurements and n is the number of coefficients A_j .

The H^{E} values for dibromomethane, 1,2-dibromoethane, and 1,3-dibromopropane + benzene are positive and decrease with increasing length of the dibromoalkane. For 1,4dibromobutane + benzene, $H^{\rm E}$ changes sign and becomes more and more negative with increasing separation between the two bromine atoms in the dibromoalkane. On the other hand, $H^{\rm E}$ of these mixtures shows a remarkable exothermic effect relative to dibromoalkane + n-hexane or + cyclohexane (1, 2) due to the strong Br/C_6H_6 specific interaction.

Glossary

 A_j coefficients in eq 1

- Η molar enthalpy, J mol⁻¹
- Ν total number of measurements
- n number of coefficients A_i
- mole fraction x

```
Greek Letters
```

standard deviation, eq 2 σ

Superscripts

 \mathbf{E} excess property

Subscripts

calc calculated property

i type of component

Literature Cited

- (1) Muñoz Embid, J.; Velasco, I.; Otín, S.; Gutiérrez Losa, C.; Kehiaian,
- H. V. Fluid Phase Equilib. 1987, 38, 1.
 (2) García Lisbona, N.; García Vicente, I.; Muñoz Embid, J.; Velasco, I.; Otín, S.; Kehiaian, H. V. Fluid Phase Equilib. 1989, 45, 191.
- (3) Soriano, M. J.; Velasco, I.; Otin, S.; Kehiaian, H. V. Fluid Phase Equilib. 1989, 45, 205. (4) Muñoz Embid, J.; Berro, C.; Otín, S.; Kehiaian, H. V. J. Chem. Eng.
- Data 1990, 35, 266. (5) Artal, M.; Fernández, J.; Muñoz Embid, J.; Velasco, I.; Otín, S.;
- Kehiaian, H. V. J. Solution Chem. 1991, 20, 1. (6) Muñoz Embid, J.; Artal, M.; Fernández, J.; Velasco, I.; Otín, S. J.
- Chem. Eng. Data 1991, 36, 428.
 (7) Singh, P. P.; Nigam, R. K.; Sharma, V. K. Fluid Phase Equilib. 1984, 18, 313.
 (8) Nachel A. V. Y.
- (8) Neckel, A.; Volk, H. Monatsh. Chem. 1958, 89, 7549.
- (9) Kahlra, K. C.; Singh, K. C.; Spah, D. C. Fluid Phase Equilib. 1991, 66. 211.
- (10) Kahlra, K. C.; Singh, K. C.; Soni, M.; Spah, D. C. J. Chem. Thermodyn. 1990, 22, 771.
- (11) Pérez. P.; Florián, A.; Lázaro, B.; Gracia, M.; Gutiérrez Losa, C. Ber. Bunsen-Ges. Phys. Chem. 1983, 87, 5.
- (12) Mahl, B. S. Kooner, Z. S.; Khurma, J. R. Thermochim. Acta 1976, 17, 256.
- (13) Birdi, G. S.; Vij, J. N.; Mahl, B. S. Thermochim. Acta 1974, 10, 253. (14) Spah, D. C.; Verma, K. C.; Singh, K. C.; Kalra, K. C. Thermochim.
- Acta 1989, 146, 187. (15) Gutiérrez Losa, C.; Gracia, M. Rev. Acad. Cienc. Zaragoza 1971, 26,
- 101. (16) Polo, C.; Otín, S.; Gutierrez Losa, C. Int. DATA Ser., Sel. Data
- Mixtures, Ser. A 1976, 2, 139. (17) Ewing, M. B.; Marsh, K. N.; Stokes, R. H.; Tuxford, C. W. J. Chem. Thermodyn. 1970, 2, 751. Marsh, K. N. Int. DATA Ser., Sel. DATA

Received for review February 23, 1993. Revised June 8, 1993. Accepted June 17, 1993.

Abstract published in Advance ACS Abstracts, August 15, 1993.

Mixtures, Ser. A 1973, 22.